1 Basic Terminology

2 Connectivity

Def. A connected graph G is a graph where Yu, v € V(G),3 walk from u — v
Def. Xi,..., X, isapartitionof V(G)if X u..uX,=V(G and X;Nn..n X, =9

Lemma 2.1. If G is not a connected graph then there exists a partition (X, Y) of V(G) s.t. X, Y #
@ and no edge links X and Y

Lemma 2.2. If G is connected then V partition (X, Y) of V(G) s.t. X,Y # @ :3e € E(G) s.t. e has
an end in both X and Y.

Lemma 2.3. If 3walk u — vthen3pathu — v
Lemma 2.4. H;, H, connected subgraphs s.t. V(H;) NV (H) # ¢ = H; U H, connected

Def. A component of a graph G, denoted is a maximal connected subgraph. We say a subgraph
H € G is maximal if VH' s.t. H < H' < G we have H' = H. Denote the number of distinct
connected components by comp(G)

Lemma 2.5. Every vertex of a graph G belongs to a unique connected component of G.
Lemma 2.6. If e € E(G) then either:
1. ebelongs to acyclein G and comp(G—e) = comp(G)

2. ebelongs to no cycle and comp(G—e) = comp(G) +1

3 Trees and Forests

Def. A forest is a graph with no cycles

Def. A tree is a connected forest

Def. Aleafis avertex of degree 1.

Theorem 3.1. If F is a non-empty forest then comp(F) = |V (F)| - |E(G)|
Corollary 3.2. If T is a tree then |E(T)| = |V(T)| -1

Def. Amap f: V(G)UE(G) — V(H)UE(H) is an isomorphism between G and H if f is a bijection
from V(G) — V(H) and E(G) — E(H) and v € V(G) incident e € E(G) < f(v) € V(H) incident
to f(e) € E(H)

Lemma 3.3. T is atrees.t. |[V(T)| =2, X a set of leaves and Y is a set of vertices with degree
larger than 3 = |X|=|Y|+2 (and in particular | X| = 2)

Lemma 3.4. T trees.t. |V(T)| = 2. T has exactly two leaves then T is a path.

Lemma 3.5. G graph, v leaf of G then G is a tree if an only if G\ v is a tree.



Lemma 3.6. Let T be a tree then for any a, b € V(T) there exists a unique path P < T from a to
b.

4 Spanning Trees

Def. A spanningtreeis atree T < G with V/(T) = V(G).
* G has a spanning tree iff it is connected and non-null.

Lemma 4.1. Let G be non-null and connected. If H € G minimal such that V(H) = V(G) and H
connected = H is a spanning tree.

Lemma 4.2. Let G be non-null and connected. If H < G is a maximal subgraph such that G has
no cycles, it is a spanning tree.

Def. Let G be a graph, T a spanning tree of G. For f € E(G) — E(T). Let C be a cycle of G such
that C — fisa pathin T. Then we call C the fundamental cycle of f with respectto T.

Lemma 4.3. Let T be a spanning tree of G. Let f € E(G) — E(T). Then, there exists a unique
fundamental cycle of f with respectto T.

Lemma 4.4. Let T be a spanning tree of G. Let f € E(G) — E(T) and C be the fundamental cycle
of f with ee E(C) —{f}. Then T + {f} — {e} is still a spanning tree of G

Def. Let Gbe agraph, w: E(G) — R". Aspanning tree T is called a min-cost spanning tree(MST)

of Gif:
Y. wle)
e€E(G)

is minimal among all spanning trees.

Corollary 4.5. Let T be a MST for a graph G with weight function w. Let f,c,e be as in the
statement of 4.4. Then, w(f) = w(e).

Theorem 4.6. Let T be a MST on n vertices and assume for convenience that w(e) is distinct
for all edges e € E(G). Let ey,...e;—1 be the edges of T with w(e;) < w(ey)....

Then e; is the edge with minimum weight such that e; ¢ {e1, e2...e;_1} and such that {e}, e...e;}
contains no cycle.

Def. Kruskal’s Algorithm: Given a graph G, outputs a MST. With the first i — 1 edges chosen,
pick the edge with minimum weight such that adding the edge doesn’t create a cycle.

Theorem 4.7. Kruska’s algorithm always outputs a MST.
Def. A rooted forest F is a forest with a vertex (called root) selected in every component.
Theorem 4.8. Cayley’s theorem: The complete graph on n vertice has n”*~2 spanning trees.

Theorem 4.9. There are (’Z)l -n"""'~! rooted spanning forests in K;, with i components. Taking
i =1 implies Cayley’s theorem.

Def. Let G be aloopless graph. Then the Laplacian of G, L(G) is a n x n symmetric matrix where:



* (i,1) is the degree of v;
* (i, ) is the number of edges from v; to v;

Theorem 4.10. Kirchoff Matrix Tree Theorem: Let G be a loopless graph and M = L(G) be its
Laplacian. Then the number of spanning trees of G is the determinant of M;; where M, ; is
obtained from M by deleting row i and column i

5 Euler’s Theorem and Hamiltonian Cycles

Lemma 5.1. Let G be a graph with E(G) # @. If G has no leaves, then it contains a cycle.

Lemma 5.2. Let G be a graph with all vertices having even degree = 3 cycles: C;,C,...Cx € G
such that each edge of G belongs to exactly one of them.

Theorem 5.3. Euler’s Theorem: Let G be a connected graph with all vertices having even de-
gree. Then, there exists a closed walk in G using each edge exactly once (a Eularian cycle).

Def. A Hamiltonian cycle is a cycle C € G with V(C) = V(G). There is no good way to certify
that a graph has no Hamiltonian cycle.

Def. Complete bipartite graph (K, ,): A simple graph whose vertices can be partitioned into
(A, B) with |A| = m and |B| = n. Every vertex in A is adjacent to every vertex of B and there are
no other edges. |E(K;, ,)| = m-n.

Remark. K, , has a Hamiltonian cycle iff m = n = 2. If they are not equal, there can be no cycle
because vertices of A, B must alternate.

Lemma 5.4. Let G be a non-null graph with some non-empty subset X with graph G\ X having
more than | X| components. Then, G has no Hamiltonian cycle.

Theorem 5.5. Dirac-Posa: Let G be a simple graph with |V(G)| =n=3. If deg(u) +deg(v) = n
for every pair of non-adjacent vertices u, v € V(G). Then, G has a Hamiltonian cycle.

Corollary 5.6. Let G be a simple graph with |V (G)| = n = 3. If any of the following hold, then G
has a Hamiltonian cycle.

a) |E(G)=(y)—n-3
b)Vve G:deg(v) zg

6 Bipartite graphs

Let G be a graph, a partition (A4, B) is a bipartition of G if every edge of G has exactly one end in
A and another in B. A graph is deemed bipartite if it contains a bipartition.

Paths and even cycles are examples of bipartite graphs.

Theorem 6.1. Every tree is bipartite.

Theorem 6.2. For graphs G, the following are equivalent:



1. Gis bipartite.
2. G contains no closed walk with an odd number of edges.
3. G contains no odd cycle.

We say H is an induced subgraph of G if for every e € E(G) with ends in V(H), e € E(G). Equiv-
alently, H can be obtained by deleting vertices.

Theorem 6.3. Let G be a simple graph. It is bipartite iff it contains no induced odd cycle (no
induced subgraph is an odd cycle).

7 Matching in bipartite graphs
A set M < E(G) is a matching if no edge of M is a loop and every vertex of G is incident to at

most one edge in M.

We denote the matching number of G by v(G), i.e. the number of edges in the matching with
the most edges in G.

Aset V < V(G) is a vertex cover if each edge in E(G) hasanendin V.
We denote by 7(G) the minimum size of a vertex cover in G.
Lemma 7.1. For every graph G, we have that v(G) < 7(G).

For cycles, we have that:

v(G) = |5]

7(G) =[]

And for complete graphs, we have that:
v(G) = | 5]

7(G)=n-1

Remark. For any simple graph, we have that 7(G) =2 v(G) = %G)

Let M be a matching in G. We say that a path P is M-alternating if edges of P alternate between
edges of M and E(G) \ M.

A path P is M-augmenting if |E(P)| = 1, P is M-alternating and ends of P are not incident to
edges of M.

Lemma 7.2. A matching in G has maximum size iff there is no M-augmenting path.
Theorem 7.3. Konig’s Theorem: For bipartite graphs, 7(G) = v(G)

We say that Y < V(G) is covered by a matching M if every vertex is incident to an edge of M. It
is a perfect matching if M covers V(G).



Corollary 7.4. Let G be a bipartite graph and d be a positive integer. If Vv € V(G) : deg(v) = d,
then G has a perfect matching.

Theorem 7.5. Hall’s Theorem: Let G have bipartition (A, B), then there is a matching in G that
covers A iff [INg(S)| = |S| for every S  A.

Ng(S) denotes the set of all vertices who have a neighbor in S.

8 Menger’s Theorem and Separations

Def. A separation of a graph G is a pair (A, B) with Au B = V(G) and there is no edge in G with
one end in A— B and the other in B — A.

To go from A to B, a path must pass through An B.
The order of a separation (A, B) is |AN B|.

Remark. If (A, B) is a separation of G and P a path from a € Ato b € B, P contains a vertex in
ANB.

Thus, we have that the max number of paths from Q < A to R < B is the order of the separa-
tion.

Theorem 8.1. Let G be a graph and Q, R < V(G), k € N. Then exactly one holds:
1. There exist paths P;...Py from Q to R, pairwise vertex disjoint.
2. There exists a separation (A, B) of order < k with Q < Aand R < B.

The theorem can be used to show Konig’s theorem.

Theorem 8.2. Let G be a bipartite graph. If G contains no matching of size k, then G contains a
vertex cover of size less than k.

Now, let’s consider the case where the paths can have the same ends.

Theorem 8.3. Menger’s Theorem. Let G be a graph, s, t € V(G) distinct and non-adjacent. Let
k be a positive integer. Then exactly one of the following holds:

1. There exists Py, P,,...Py paths in G from s to ¢ pairwise vertex disjoint excepts for the ends
(V(P)nV(Pj) ={s, 1}).

2. There exists a separation (A, B) of G of order < k such that s€ A\ B,t€ B\ A.

Def. We say that G is k-connected if |V (G)| = k+ 1 (here or else complete graphs are infinitely
connected) and G\ X is connected for any X < V(G), |X| < k. This means that if we remove k
vertices, the graph will still be connected.

* 1l-connected <= connected and non-null
- Every tree is 1-connected but no tree is 2-connected (can always remove neighbor
of leaf to disconnect).
- Every cycle with more than 2 vertices is 2-connected.



Theorem 8.4. Let G be a k-connected graph. Then, for every pair of distinct vertices s, £ € V(G),
there exists paths Py, P;...Py in G such that the paths are pairwise vertex disjoint except for s, ¢
and pairwise edge disjoint (can use a edge from s to ¢ but only once).

Consider the case where edges break/can be deleted. In a graph G let 6 (X) denote the set of all
edges in G with one end in X and the other in V(G) - X

Def. A line graph L(G) of a graph G is a graph with V(L(G)) = E(G) and 2 vertices of L(G) are
adjacent iff the corresponding edges in G share an end.

Theorem 8.5. Let G be agraph, s, t € V(G) distinct and non-adjacent. Let k be a positive integer.
Then exactly one of the following holds:

* There exist k paths from s to ¢ in G that are pairwise edge disjoint.
e There exists X € V(G) suchthatse X, te V(G)\ X and |6 (X)| < k

9 Directed graphs and network flows

A directed graph (or digraph) G is a graph where every edge is prescribed a direction, that is for
every edge e, one of its ends is called its tail and another its head. Then e is said to be directed
from the tail to head.

A directed path P from s to t in a digraph G is a path from s to ¢ such that following P, we get
that each edge is traversed from its tail to its head.

For a digraph G and X € V(G), let 6 (X) be the set of all edges of G with tail in X and head in
V(G)\ X (i.e. that go to V(G) \ X).

Conversely, 6~ (X) is the set of all edges of G with head in X and tail in V(G) (i.e. that go to
X).

Lemma 9.1. Let G be a digraph, s, t € V(G). Then, exactly one of the following holds.
1. There is a directed path in G from s to ¢
2. Thereis X< V(G) suchthatse X,te V(G)\ Xand 6t (X) =@

Let G be a digraph such that s, € V(G), s # t. An s-t flow in G is a function ¢ : E(G) — R, such
that for every v € V(G) — {s, t} we have that

Y. ple= ) ¢l
ecd(v) ecdt(v)

i.e. that the flow into a vertex is equal to the flow out of the vertex.

The value of an s-t flow ¢ is }_ o5+ (5) P(€) — Y ees-(s) P(€). The second part is to make sure we
don’t double count flow going back to s.



Lemma 9.2. Let ¢ be an s-t-flow on a digraph G with value k. Then, for every X < V(G) such
thatse X, re V(G) — X:

Y - ). Ple=k

eed™ (X) eed~(X)

Lemma 9.3. Let ¢ be an integral s-t flow (only positive integer flows for the edges) on a digraph
G with value k = 1. Then there exists directed path Py, P,...Py in G from s to ¢ such that every
edge e belongs to at most ¢(e) of these paths.

Let G be a digraph and c : E(G) — N be a capacity function that prescribes to each edge its
constraint. We say for distinct s, £ € V(G) that an s-t-flow ¢ is c-admissible if ¢(e) < c(e), for
every e € E(G).

The question we want to answer is what is the maximum value of a c-admissible s-t-flow.

We say a path P is ¢p-augmenting if P is a path in G from s to v € V(G) (doesn’t need to be
directed) and:

* ¢(e) < c(e) — 1 for every e € E(P) which is used in the forward direction as we traverse P
from s to v (i.e. it is used correctly).
* ¢(e) = 1 for every e € E(P) used in the other direction.

Lemma 9.4. Let G be a digraph, s, t € V(G) distinct, ¢ : E(G) — N a capacity function and ¢ be
an integral, c-admissible s-t-flow of value k.

If there exists a ¢-augmenting path in G from s to #, then there is an integral c-admissible s-t-
flow on G of value k + 1.

Theorem 9.5. Ford-Fulkerson (Max Flow- Min Cut): Let G, s, t, ¢ be as defined above. Let k=1
be an integer, then exactly one of the following holds:

1. There exists a c-admissible s-t-flow ¢ of value k

2. AX S V(G),s€ X, 1€ V(G) — X and ¥ pe5+(x) c(€) < k

10 Independent Sets and Ramsey Theorem

S € V(G) is a independent set if no edge of G has both ends in S (vertices of S are not incident
to loops).

We denote by a(G) the maximum size of an independent set in G (also known as the indepen-
dence number).

F < E(G) is an edge cover if every vertex of G is incident to an edge of F.

We denote by p(G) the minimum size of an edge cover in G (only well defined if every vertex of
G is incident to an edge).

G | v(G) | 1(G) | a(G) | p(G)
Ky, | l3] | n-1 1 [51
Cyv | L3l | 131 | 5] | I3




e a(G) < p(G)

Lemma 10.1. For any graph G, we have a(G) +7(G) = |V(G)|
Theorem 10.2. Gallai equations: Let G be a connected, simple graph with |V (G)| = 2. Then:

v(G) +p(G) =V(G)

Corollary 10.3. Let G be a connected, bipartite, simple graph with |V (G)| = 2, then a(G) = p(G).

Let G be a simple graph. We say that X < V(G) is a clique in G if every pair of vertices in X are
adjacent.

Denote by w(G) the size of the maximum clique in G.

Givent that s, £ = 1, let R(s, t) be the minimum positive integer n such that every simple graph
G with |V (G)| = n contains an independent set of size s or a clique of size ¢ (satisfies a(G) = s or
w(G) =1).

Theorem 10.4. Ramsey, Erdos, Szeckeres: R(s, f) exists for all s and ¢ For all s, = 2.
R(s,t)<R(s—-1,t)+ R(s,t—-1)

R(1,5) =1=R(s,1))
R2, )=t

R@3,3)=6
Corollary 10.5. Forall s,z =1:R(s, 1) < (**] 7).
We have that:
_ s
WD <R 9<| T L
Vs

s—1

R(s,t) = R(t, )

The definition of Ramsey’s number is equivalent to the minimum m such that in every coloring
of edges of K}, using colors red and blue, there are either s vertices pairwise joined by red edges,
or ¢ vertices pairwise joined by blue edges.

Define Ry (sy,$2...5x) as a multicolor Ramsey number to be the minimum 7 such that every
coloring of edges of K}, using colors {1,2...k} there exists 1 < i < k and a set of s; vertices pairwise
joined by edges of color i.

Theorem 10.6. For all positive integers k, s1, $2...Sk, Ri(S1, S2...Sk) exists (i.e. is finite).



Theorem 10.7. For every integer k = 1, there exists n such that for every coloring of {1...n} using
k colors, there exists a monochromatic solution to x+ y = z (i.e. x,y,z€{l..n},x+y =z and
X, ¥,z are all colored in the same color).

Example 10.1. For k = 2,n =5 suffices. WLOG, assume 1 is red. If 2 is red, we have a solution
(1+1 = 2), so blue. If 4 is blue, we have a solution (2+2 = 4) so red. If 5 is red (4+1=5), have a
solution so blue. And now regardless of color assigned to 3, we have a solution.

Example 10.2. x+2y = z+1 does not necessarily have a monochromatic solution with 2 colors
(color even numbers in one color and odd numbers in another).

Theorem 10.8. Fermat’s Last Theorem: x" + " = 2", n > 2 has no positive integer solutions.
Fact: x = y(modp) < x— y divisible by p.

Theorem 10.9. For every integer m = 1 there exists py such that for every prime p = pg there
exists positive integers x, y, z not divisible by p such that:

x"+y™=z"(modp)

Theorem 10.10. R(s,s) =22 for every integer s = 2.

11 Matchings in general graphs and Tutte’s theorem

When does a graph have a perfect matching? A matching is perfect iff | M| = 'V(Zﬂ

If |V(G)| is odd, then G has no perfect matching. If a component of G has an odd number of
vertices, then G also has no perfect matching.

If G is bipartite, then G has no perfect matching iff there exists a vertex cover X of G such that
V(G
|1X| < 2L

For example, consider 3 components K that are connected by one vertex. Such a graph has no
perfect matching.

Theorem 11.1. Tutte’s Theorem: A graph G has a perfect matching iff comp,(G — X) < |X]| for
every X € V(G).

Theorem 11.2. Tutte-Berge: A graph G has matching of size k iff * comp,(G-X) < | X|+|V(G)|-
2k for every X < V(G).

11.1is 11.2 with k= &1
Def. We say that a graph G is d-regular if deg(v) = d for every v € V(G).

e 1-regular simple graphs are matchings
 2-regular graphs are unions of simple cycles

Def. We say e € E(G) is a cut-edge if comp(G —e) = comp(G) +1 < e does not belong to a
cyclein G.

Theorem 11.3. Let G be a 3-regular graph. If G has no cut-edge, then G has a perfect matching.



12 Vertex coloring

Let G be a loopless graph. Amap ¢ : V(G) — S is a k-coloring of G if |S| = k and ¢(u) # ¢(v) for
every pair u, v of adjacent vertices of G.

e Elements of S are called colors
* The sets of vertices which are assigned a given color are color classes
* Color classes are independent sets

The chromatic number of G, denoted by y(G), is the minimum positive integer such that there
is a k-coloring of G, i.e. G is k-colorable.

* ¥(G) <1: Edgeless

* ¥(G) <2: Bipartite < no odd-cycles as subgraphs.

* ¥(G) = 3: Under the "Unique Games" hypothesis, every algorithm which does the follow-
ing must sometimes take exponential time in the size of the input.
Takes in G, and either outputs y(G) =4 or y(G) < 100000

Lemma 12.1. Let G be a loopless graph. Then:
1. x(G) =2 w(G) where w(G) is the size of the maximum complete subgraph of G
2. x(G) = [N

Example 12.1. Applying 2. to odd cycles yields:

2k+1

a(Cor1) =k = x(Caer1) = [ 1=3

And equality holds for every k = 1.
Let A(G) denote the maximum degree of a vertex in G. Let G be a loopless graph.

* A(G)=0 <= x(G) =1
* A(G)=1 = x(G) <2
* A(G=2 = x(G)<3

1(G) < A(G) + 1 for every loopless G.

A graph G is k-degenerate if every non-null subgraph H of G contains a vertex of degree at most
k. Every graph G is A(G)-degenerate.

* Gisl-degenerate < G is a forest

Def. Greedy coloring algorithm: Algorithm for coloring graph that performs relatively well (op-
timal for complete graphs)

Input: Loopless graph G and an ordering (v;...v,) of V(G)

Algorithm: Color vertices in order using integers as colors. If v;...v; are colored, assign to v;4;
the smallest integer color which is not used by already colored neighbors of v;

Output: A k-coloring of G for some integer k.

10



There is always an ordering of the vertices for which the algorithm outputs an optimal coloring.

Theorem 12.2. Let G be a loopless, k-degenerate graph for some integer k = 0. Then:

(G <k+1

We would like y(G) < A(G). However, K, is a counter example y(K,) = n and A(K,) =n—-1 as
well as odd cycles that have y(Cox+1) = 3, A(Cox+1) = 2. However, these are the only connected
counter examples.

Theorem 12.3. Let G be a loopless, connected graph. If G is not a complete graph or an odd
cycle, then:
x(G) =A(G)

Theorem 12.4. Blaise Pascal: For every k = 0, there exists a simple graph Gy such that:

° w(Gk) <2
* Gy is k-degenerate
* x(Gp)=k+1

Conjecture: If G is a loopless graph, then:

w(G)+AG)+1
1(G) = [ 2 1

This bound would be tight. Let Cglf be 5 graphs Kj joined in a cycle. Then, we have that w(G) =
2k, A(G) = 3k — 1. By the conjecture and the bound from last time, we have that:

[V(G)I
a(G)

[%1—f 1= (G)<f%1
2 SHE=1

13 Edge Coloring
A k-edge-coloring of a loopless graph G is a map ¢ : E(G) — S with |S| = k such that ¢(e) # ¢(f)
for every pair of distinct e, f € E(G) sharing an end.

G is k-edge-colorable if it admits a k-edge-coloring. y’(g) (the edge chromatic number) is the
minimum k such that G is k-edge-colorable.

k-edge coloring of G < k-coloring of L(G), the line graph. In particular, y'(G) = y(L(G)).
Proposition 13.1. For a loopless graph G, we have A(G) < y'(G) < 2A(G) — 1.

Lemma 13.2. Let G be a graph with A(G) < k. Then G is a subgraph of some k-regular graph
H. Moreover, if G is loopless (respectively bipartite) then H can also be chosen to be loopless
(respectively bipartite).

Theorem 13.3. Konig: For every bipartite graph G, y'(G) = A(G).
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Examples where equality doesn't hold: y'(C3) = 3 yet A(G) = 2. Similarly, y'(Cor=1) =3 yet A(G) =
2.

Theorem 13.4. Vizing: For every simple graph G, y'(G) < A(G) + 1.

For graphs without loops but where parallel edges are allowed we need a bigger bound. For
example, take C:f to be the union of 3 cycles with k edges. Then, A(Celf) = 2k while y’ (C;C) =
3k.

We say that F < E(G) is a 2-factor in a graph G if every vertex of G is incident to exactly two
edges of F.

Theorem 13.5. Let G be a 2k-regular loopless graph then E(G) can be partitioned into k 2-
factors.

Theorem 13.6. Let G be aloopless graph, then y'(G) <3 [%1

14 Minors and Hadwiger’s conjecture

H is a subgraph of G if H can be obtained from G by repeatedly vertices and/or edges.

Let e be a non-loop edge of a graph G with ends u, v. Contracting e corresponds to deleting
e and identifying u, v (in the new graph, every edge incident to u or v is incident to the new
vertex).

H is a minor of G if H can be obtained from G by either deleting vertices/edges and/or con-
tracting edges (possibly no operations, i.e. G is a minor of G).

Equivalently, H is a minor of G if H can be obtained from a subgraph of G by contracting
edges.

Proposition 14.1. A graph G contains a cycle Ci as a minor iff G contains a cycle of length at
least k as a subgraph.

Consequently:

¢ No C; minor <= G is a forest

* No C, minor <= G is a forest with some loops added.

* No C3 = K3 minor <= G is a forest with some loops and or parallel edges added (i.e. not
simple)

Hadwiger’s conjecture: Let G be a loopless graph, ¢ = 1 integer. If G has no K; minor, then
x1(G) < t—1. Since K;_; has no K; minor and y (K;-;) = t—1, such a bound would be tight.

e t=1: Then you have no vertices and thus 0-colorable.

e t=2:No K, subgraph, no loops = no edges = 1-colorable.

* t=3: Forest, which is 2-colorable

* t=4: Proved by Hadwiger

e t=>5: Equivalent to 4 color theorem (planar graphs don’t have K5 as minor)
* t=6: Proved by Robertson, Seymour and Thomas
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A subdivision of a graph H is a graph G obtained from H by replacing edges of H by internally
vertex disjoint paths with the same ends (as the edges that paths replace).

If G contains a subdivision of H as a subgraph, then G contains H as a minor. However, the
converse is not true in general (see picture).

Lemma 14.2. Let G be a 3-connected graph, then G contains a K; minor (and thus G contains
a subdivision of K, as a subgraph)

Lemma 14.3. Let G be a simple, non-null graph with no K4 minor. Then, for every clique X <
V(G), X # V(G),|X]| <2, there exists v € V(G) — X such that degg(v) < 2.

Theorem 14.4. If G is a loopless graph, G has no K; minor, then y(G) < 3.

15 Planar graphs

A drawing of a graph G in the plane is a representation of G where vertices of G are represented
by distinct points in the plane and edges are represented by curves joining the points corre-
sponding to their ends, such that these curves don’t intersect themselves or each other.

Such a drawing of G divides the plane into regions where 2 points belong to the same region
if they can be joined by a curve disjoint from the drawing. There is always one unbounded
region.

A graph is planar if it admits a planar drawing. Let Reg(G) denote the number of regions in a
planar drawing of G

Jordan Curve theorem: Any closed non-self intersection curve separates the plane into 2 re-
gions. This implies that for any edge e of a planar drawing of a graph, if e belongs to a cycle,
then the 2 regions on different sides of e are distinct.

Theorem 15.1. Euler’s formula: Let G be a graph drawn in the plane. Then:
IV(G)|-E(G)|+ Reg(G) =1+ comp(G)
More specifically, if G is connected, then |V (G)|-|E(G)|+ Reg(G) = 2. If Gis a forest, Reg(G) = 1.

The length of a region is the number of edges of G that belong to its boundary, with edges with
both sides belonging to the boundary being counted twice.

Lemma 15.2. Let G be a simple connected graph drawn on the plane with |V (G)| = 3, then every
region of G has length = 3

Lemma 15.3. Let G be a simple planar graph with |V (G)| = 3. Then, |E(G)| < 3|V(G)|-6. If G
contains no K3 subgraphs, then |E(G)| < 2|V (G)| - 4.

Corollary 15.4. The graphs K5 and K3 3 are not planar (count vertices/edges and see contradic-
tion with formula).

Corollary 15.5. Let G be a simple planar graph with |V (G)| = 3, then:

Y 6-deg(v)=12
VeV (G)
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Theorem 15.6. Four Color Theorem: If G’ is simple and planar, y(G) <4
Corollary 15.7. If G is simple and planar, then y(G) <6.

16 Kuratowski’s Theorem

Theorem 16.1. A graph G is planar iff G contains neither K5 nor K3 3 as a minor.

Theorem 16.2. A graph G is planar iff G contains neither a subdivision of K5 nor a subdivision
of K33 as a subgraph.

To show a graph is planar, either find a drawing for it or show there is a subdivision of K5 or
Kg,g.

Theorem 16.3. Archdeacon: There is an explicity collection of 35 minor-minal graphs which
can not be drawn in the projective plane.

Theorem 16.4. Robertson, Seymour: Let F be a class of graphs closed under taking minors
(e.g. the class of all graphs that can be drawn on a given surface). If F is not the class of all
graphs, then there exists a finite collection H;, H,.. Hy of graphs such that G € F iff G does not
contain any H; as a minor.

17 Coloring planar graphs

Theorem 17.1. Heawood: Let G be a loopless planar graph, then y(G) <5

A graph drawn in the plane is a triangulation if every region is bounded by a cycle of length
3.

Let G, G* be drawn in the plane. We say that G* is a planar dual of G if

 every region of G contains exactly one vertex of G*.
* every edge of G is crossed by exactly one edge of G* and the drawings are otherwise dis-
joint.
* |[E(G)|=|E(G)I.
Theorem 17.2. Tait: Let G be a planar triangulation and let G* be its dual. Then, y(G) < 4 iff
x(G*) <3.
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