
1 Basic Terminology

2 Connectivity

Def. A connected graph G is a graph where ∀u, v ∈V (G),∃ walk from u → v

Def. X1, ..., Xn is a partition of V (G) if X1 ∪ ...∪Xn =V (G) and X1 ∩ ...∩Xn =;
Lemma 2.1. If G is not a connected graph then there exists a partition (X ,Y ) of V (G) s.t. X ,Y 6=
; and no edge links X and Y

Lemma 2.2. If G is connected then ∀ partition (X ,Y ) of V (G) s.t. X ,Y 6= ; : ∃e ∈ E(G) s.t. e has
an end in both X and Y .

Lemma 2.3. If ∃ walk u → v then ∃ path u → v

Lemma 2.4. H1, H2 connected subgraphs s.t. V (H1)∩V (H2) 6= ; =⇒ H1 ∪H2 connected

Def. A component of a graph G, denoted is a maximal connected subgraph. We say a subgraph
H ∈ G is maximal if ∀H ′ s.t. H ⊆ H ′ ⊆ G we have H ′ = H . Denote the number of distinct
connected components by comp(G)

Lemma 2.5. Every vertex of a graph G belongs to a unique connected component of G.

Lemma 2.6. If e ∈ E(G) then either:

1. e belongs to a cycle in G and comp(G −e) = comp(G)

2. e belongs to no cycle and comp(G −e) = comp(G)+1

3 Trees and Forests

Def. A forest is a graph with no cycles

Def. A tree is a connected forest

Def. A leaf is a vertex of degree 1.

Theorem 3.1. If F is a non-empty forest then comp(F ) = |V (F )|− |E(G)|
Corollary 3.2. If T is a tree then |E(T )| = |V (T )|−1

Def. A map f : V (G)∪E(G) →V (H)∪E(H) is an isomorphism between G and H if f is a bijection
from V (G) →V (H) and E(G) → E(H) and v ∈V (G) incident e ∈ E(G) ⇐⇒ f (v) ∈V (H) incident
to f (e) ∈ E(H)

Lemma 3.3. T is a tree s.t. |V (T )| ≥ 2, X a set of leaves and Y is a set of vertices with degree
larger than 3 =⇒ |X | ≥ |Y |+2 (and in particular |X | ≥ 2)

Lemma 3.4. T tree s.t. |V (T )| ≥ 2. T has exactly two leaves then T is a path.

Lemma 3.5. G graph, v leaf of G then G is a tree if an only if G \ v is a tree.
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Lemma 3.6. Let T be a tree then for any a,b ∈V (T ) there exists a unique path P ⊆ T from a to
b.

4 Spanning Trees

Def. A spanning tree is a tree T ⊆G with V (T ) =V (G).

• G has a spanning tree iff it is connected and non-null.

Lemma 4.1. Let G be non-null and connected. If H ⊆G minimal such that V (H) =V (G) and H
connected =⇒ H is a spanning tree.

Lemma 4.2. Let G be non-null and connected. If H ⊆G is a maximal subgraph such that G has
no cycles, it is a spanning tree.

Def. Let G be a graph, T a spanning tree of G . For f ∈ E(G)−E(T ). Let C be a cycle of G such
that C − f is a path in T . Then we call C the fundamental cycle of f with respect to T .

Lemma 4.3. Let T be a spanning tree of G . Let f ∈ E(G)−E(T ). Then, there exists a unique
fundamental cycle of f with respect to T .

Lemma 4.4. Let T be a spanning tree of G . Let f ∈ E(G)−E(T ) and C be the fundamental cycle
of f with e ∈ E(C )− { f }. Then T + { f }− {e} is still a spanning tree of G

Def. Let G be a graph, w : E(G) →R+. A spanning tree T is called a min-cost spanning tree(MST)
of G if: ∑

e∈E(G)
w(e)

is minimal among all spanning trees.

Corollary 4.5. Let T be a MST for a graph G with weight function w . Let f ,c,e be as in the
statement of 4.4. Then, w( f ) ≥ w(e).

Theorem 4.6. Let T be a MST on n vertices and assume for convenience that w(e) is distinct
for all edges e ∈ E(G). Let e1, ...en−1 be the edges of T with w(e1) < w(e2)....

Then ei is the edge with minimum weight such that ei 6∈ {e1,e2...ei−1} and such that {e1,e2...ei }
contains no cycle.

Def. Kruskal’s Algorithm: Given a graph G , outputs a MST. With the first i −1 edges chosen,
pick the edge with minimum weight such that adding the edge doesn’t create a cycle.

Theorem 4.7. Kruska’s algorithm always outputs a MST.

Def. A rooted forest F is a forest with a vertex (called root) selected in every component.

Theorem 4.8. Cayley’s theorem: The complete graph on n vertice has nn−2 spanning trees.

Theorem 4.9. There are
(n

i

)
i ·nn−i−1 rooted spanning forests in Kn with i components. Taking

i = 1 implies Cayley’s theorem.

Def. Let G be a loopless graph. Then the Laplacian of G , L(G) is a n×n symmetric matrix where:
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• (i , i ) is the degree of vi

• (i , j ) is the number of edges from vi to v j

Theorem 4.10. Kirchoff Matrix Tree Theorem: Let G be a loopless graph and M = L(G) be its
Laplacian. Then the number of spanning trees of G is the determinant of Mi ,i where Mi ,i is
obtained from M by deleting row i and column i

5 Euler’s Theorem and Hamiltonian Cycles

Lemma 5.1. Let G be a graph with E(G) 6= ;. If G has no leaves, then it contains a cycle.

Lemma 5.2. Let G be a graph with all vertices having even degree =⇒ ∃ cycles: C1,C2...Ck ∈G
such that each edge of G belongs to exactly one of them.

Theorem 5.3. Euler’s Theorem: Let G be a connected graph with all vertices having even de-
gree. Then, there exists a closed walk in G using each edge exactly once (a Eularian cycle).

Def. A Hamiltonian cycle is a cycle C ⊆ G with V (C ) = V (G). There is no good way to certify
that a graph has no Hamiltonian cycle.

Def. Complete bipartite graph (Km,n): A simple graph whose vertices can be partitioned into
(A,B) with |A| = m and |B | = n. Every vertex in A is adjacent to every vertex of B and there are
no other edges. |E(Km,n)| = m ·n.

Remark. Km,n has a Hamiltonian cycle iff m = n ≥ 2. If they are not equal, there can be no cycle
because vertices of A,B must alternate.

Lemma 5.4. Let G be a non-null graph with some non-empty subset X with graph G \ X having
more than |X | components. Then, G has no Hamiltonian cycle.

Theorem 5.5. Dirac-Posa: Let G be a simple graph with |V (G)| = n ≥ 3. If deg (u)+deg (v) ≥ n
for every pair of non-adjacent vertices u, v ∈V (G). Then, G has a Hamiltonian cycle.

Corollary 5.6. Let G be a simple graph with |V (G)| = n ≥ 3. If any of the following hold, then G
has a Hamiltonian cycle.

a) |E(G)| ≥ (n
2

)−n −3

b) ∀v ∈G : deg (v) ≥ n
2

6 Bipartite graphs

Let G be a graph, a partition (A,B) is a bipartition of G if every edge of G has exactly one end in
A and another in B . A graph is deemed bipartite if it contains a bipartition.

Paths and even cycles are examples of bipartite graphs.

Theorem 6.1. Every tree is bipartite.

Theorem 6.2. For graphs G , the following are equivalent:
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1. G is bipartite.

2. G contains no closed walk with an odd number of edges.

3. G contains no odd cycle.

We say H is an induced subgraph of G if for every e ∈ E(G) with ends in V (H), e ∈ E(G). Equiv-
alently, H can be obtained by deleting vertices.

Theorem 6.3. Let G be a simple graph. It is bipartite iff it contains no induced odd cycle (no
induced subgraph is an odd cycle).

7 Matching in bipartite graphs

A set M ⊆ E(G) is a matching if no edge of M is a loop and every vertex of G is incident to at
most one edge in M .

We denote the matching number of G by ν(G), i.e. the number of edges in the matching with
the most edges in G .

A set V ⊆V (G) is a vertex cover if each edge in E(G) has an end in V .

We denote by τ(G) the minimum size of a vertex cover in G .

Lemma 7.1. For every graph G , we have that ν(G) ≤ τ(G).

For cycles, we have that:

ν(G) = bn
2 c

τ(G) = dn
2 e

And for complete graphs, we have that:

ν(G) = bn
2 c

τ(G) = n −1

Remark. For any simple graph, we have that τ(G) ≥ ν(G) ≥ τ(G)
2 .

Let M be a matching in G . We say that a path P is M-alternating if edges of P alternate between
edges of M and E(G) \ M .

A path P is M-augmenting if |E(P )| ≥ 1, P is M-alternating and ends of P are not incident to
edges of M .

Lemma 7.2. A matching in G has maximum size iff there is no M-augmenting path.

Theorem 7.3. Konig’s Theorem: For bipartite graphs, τ(G) = ν(G)

We say that Y ⊆ V (G) is covered by a matching M if every vertex is incident to an edge of M . It
is a perfect matching if M covers V (G).
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Corollary 7.4. Let G be a bipartite graph and d be a positive integer. If ∀v ∈V (G) : deg (v) = d ,
then G has a perfect matching.

Theorem 7.5. Hall’s Theorem: Let G have bipartition (A,B), then there is a matching in G that
covers A iff |NG (S)| ≥ |S| for every S ⊆ A.

NG (S) denotes the set of all vertices who have a neighbor in S.

8 Menger’s Theorem and Separations

Def. A separation of a graph G is a pair (A,B) with A∪B =V (G) and there is no edge in G with
one end in A−B and the other in B − A.

To go from A to B , a path must pass through A∩B .

The order of a separation (A,B) is |A∩B |.
Remark. If (A,B) is a separation of G and P a path from a ∈ A to b ∈ B , P contains a vertex in
A∩B .

Thus, we have that the max number of paths from Q ⊆ A to R ⊆ B is the order of the separa-
tion.

Theorem 8.1. Let G be a graph and Q,R ⊆V (G),k ∈N. Then exactly one holds:

1. There exist paths P1...Pk from Q to R, pairwise vertex disjoint.

2. There exists a separation (A,B) of order < k with Q ⊆ A and R ⊆ B .

The theorem can be used to show Konig’s theorem.

Theorem 8.2. Let G be a bipartite graph. If G contains no matching of size k, then G contains a
vertex cover of size less than k.

Now, let’s consider the case where the paths can have the same ends.

Theorem 8.3. Menger’s Theorem. Let G be a graph, s, t ∈ V (G) distinct and non-adjacent. Let
k be a positive integer. Then exactly one of the following holds:

1. There exists P1,P2, ...Pk paths in G from s to t pairwise vertex disjoint excepts for the ends
(V (Pi )∩V (P j ) = {s, t }).

2. There exists a separation (A,B) of G of order < k such that s ∈ A \ B , t ∈ B \ A.

Def. We say that G is k-connected if |V (G)| ≥ k +1 (here or else complete graphs are infinitely
connected) and G \ X is connected for any X ⊆ V (G), |X | < k. This means that if we remove k
vertices, the graph will still be connected.

• 1-connected ⇐⇒ connected and non-null
– Every tree is 1-connected but no tree is 2-connected (can always remove neighbor

of leaf to disconnect).
– Every cycle with more than 2 vertices is 2-connected.
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Theorem 8.4. Let G be a k-connected graph. Then, for every pair of distinct vertices s, t ∈V (G),
there exists paths P1,P2...Pk in G such that the paths are pairwise vertex disjoint except for s, t
and pairwise edge disjoint (can use a edge from s to t but only once).

Consider the case where edges break/can be deleted. In a graph G let δ(X ) denote the set of all
edges in G with one end in X and the other in V (G)−X

Def. A line graph L(G) of a graph G is a graph with V (L(G)) = E(G) and 2 vertices of L(G) are
adjacent iff the corresponding edges in G share an end.

Theorem 8.5. Let G be a graph, s, t ∈V (G) distinct and non-adjacent. Let k be a positive integer.
Then exactly one of the following holds:

• There exist k paths from s to t in G that are pairwise edge disjoint.
• There exists X ⊆V (G) such that s ∈ X , t ∈V (G) \ X and |δ(X )| < k

9 Directed graphs and network flows

A directed graph (or digraph) G is a graph where every edge is prescribed a direction, that is for
every edge e, one of its ends is called its tail and another its head. Then e is said to be directed
from the tail to head.

A directed path P from s to t in a digraph G is a path from s to t such that following P , we get
that each edge is traversed from its tail to its head.

For a digraph G and X ⊆ V (G), let δ+(X ) be the set of all edges of G with tail in X and head in
V (G) \ X (i.e. that go to V (G) \ X ).

Conversely, δ−(X ) is the set of all edges of G with head in X and tail in V (G) (i.e. that go to
X ).

Lemma 9.1. Let G be a digraph, s, t ∈V (G). Then, exactly one of the following holds.

1. There is a directed path in G from s to t

2. There is X ⊆V (G) such that s ∈ X , t ∈V (G) \ X and δ+(X ) =;
Let G be a digraph such that s, t ∈ V (G), s 6= t . An s-t flow in G is a function φ : E(G) → R+ such
that for every v ∈V (G)− {s, t } we have that

∑
e∈δ−(v)

φ(e) = ∑
e∈δ+(v)

φ(e)

i.e. that the flow into a vertex is equal to the flow out of the vertex.

The value of an s-t flow φ is
∑

e∈δ+(s)Φ(e)−∑
e∈δ−(s)Φ(e). The second part is to make sure we

don’t double count flow going back to s.
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Lemma 9.2. Let φ be an s-t-flow on a digraph G with value k. Then, for every X ⊆ V (G) such
that s ∈ X , t ∈V (G)−X : ∑

e∈δ+(X )

φ(e)− ∑
e∈δ−(X )

φ(e) = k

Lemma 9.3. Let φ be an integral s-t flow (only positive integer flows for the edges) on a digraph
G with value k ≥ 1. Then there exists directed path P1,P2...Pk in G from s to t such that every
edge e belongs to at most φ(e) of these paths.

Let G be a digraph and c : E(G) → N be a capacity function that prescribes to each edge its
constraint. We say for distinct s, t ∈ V (G) that an s-t-flow φ is c-admissible if φ(e) ≤ c(e), for
every e ∈ E(G).

The question we want to answer is what is the maximum value of a c-admissible s-t-flow.

We say a path P is φ-augmenting if P is a path in G from s to v ∈ V (G) (doesn’t need to be
directed) and:

• φ(e) ≤ c(e)−1 for every e ∈ E(P ) which is used in the forward direction as we traverse P
from s to v (i.e. it is used correctly).

• φ(e) ≥ 1 for every e ∈ E(P ) used in the other direction.

Lemma 9.4. Let G be a digraph, s, t ∈ V (G) distinct, c : E(G) →N a capacity function and φ be
an integral, c-admissible s-t-flow of value k.

If there exists a φ-augmenting path in G from s to t , then there is an integral c-admissible s-t-
flow on G of value k +1.

Theorem 9.5. Ford-Fulkerson (Max Flow- Min Cut): Let G , s, t ,c be as defined above. Let k ≥ 1
be an integer, then exactly one of the following holds:

1. There exists a c-admissible s-t-flow φ of value k

2. ∃X ⊆V (G), s ∈ X , t ∈V (G)−X and
∑

e∈δ+(X ) c(e) < k

10 Independent Sets and Ramsey Theorem

S ⊆ V (G) is a independent set if no edge of G has both ends in S (vertices of S are not incident
to loops).

We denote by α(G) the maximum size of an independent set in G (also known as the indepen-
dence number).

F ⊆ E(G) is an edge cover if every vertex of G is incident to an edge of F .

We denote by ρ(G) the minimum size of an edge cover in G (only well defined if every vertex of
G is incident to an edge).

G ν(G) τ(G) α(G) ρ(G)
Kn bn

2 c n-1 1 dn
2 e

CN bn
2 c dn

2 e bn
2 c dn

2 e
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• ρ(G) ≥ |V (G)|
2

• α(G) ≤ ρ(G)

Lemma 10.1. For any graph G , we have α(G)+τ(G) = |V (G)|
Theorem 10.2. Gallai equations: Let G be a connected, simple graph with |V (G)| ≥ 2. Then:

ν(G)+ρ(G) = |V (G)|

Corollary 10.3. Let G be a connected, bipartite, simple graph with |V (G)| ≥ 2, thenα(G) = ρ(G).

Let G be a simple graph. We say that X ⊆ V (G) is a clique in G if every pair of vertices in X are
adjacent.

Denote by ω(G) the size of the maximum clique in G .

Givent that s, t = 1, let R(s, t ) be the minimum positive integer n such that every simple graph
G with |V (G)| = n contains an independent set of size s or a clique of size t (satisfies α(G) ≥ s or
ω(G) ≥ t ).

Theorem 10.4. Ramsey, Erdos, Szeckeres: R(s, t ) exists for all s and t For all s, t ≥ 2.

R(s, t ) ≤ R(s −1, t )+R(s, t −1)

R(1, t ) = 1 = R(s,1))

R(2, t ) = t

R(3,3) = 6

Corollary 10.5. For all s, t ≥ 1 : R(s, t ) ≤ (s+t−2
s1

)
.

We have that:

(
p

2)s ≤ R(s, s) ≤
(

s + t −2

s −1

)
4s

p
s

R(s, t ) = R(t , s)

The definition of Ramsey’s number is equivalent to the minimum m such that in every coloring
of edges of Kn using colors red and blue, there are either s vertices pairwise joined by red edges,
or t vertices pairwise joined by blue edges.

Define Rk (s1, s2...sk ) as a multicolor Ramsey number to be the minimum n such that every
coloring of edges of Kn using colors {1,2...k} there exists 1 ≤ i ≤ k and a set of si vertices pairwise
joined by edges of color i .

Theorem 10.6. For all positive integers k, s1, s2...sk , Rk (s1, s2...sk ) exists (i.e. is finite).
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Theorem 10.7. For every integer k ≥ 1, there exists n such that for every coloring of {1...n} using
k colors, there exists a monochromatic solution to x + y = z (i.e. x, y, z ∈ {1...n}, x + y = z and
x, y, z are all colored in the same color).

Example 10.1. For k = 2,n = 5 suffices. WLOG, assume 1 is red. If 2 is red, we have a solution
(1+1 = 2), so blue. If 4 is blue, we have a solution (2+2 = 4) so red. If 5 is red (4+1=5), have a
solution so blue. And now regardless of color assigned to 3, we have a solution.

Example 10.2. x+2y = z+1 does not necessarily have a monochromatic solution with 2 colors
(color even numbers in one color and odd numbers in another).

Theorem 10.8. Fermat’s Last Theorem: xn + yn = zn ,n > 2 has no positive integer solutions.

Fact: x ≡ y(mod p) ⇐⇒ x − y divisible by p.

Theorem 10.9. For every integer m ≥ 1 there exists p0 such that for every prime p ≥ p0 there
exists positive integers x, y, z not divisible by p such that:

xm + ym ≡ zm(mod p)

Theorem 10.10. R(s, s) ≥ 2
s
2 for every integer s ≥ 2.

11 Matchings in general graphs and Tutte’s theorem

When does a graph have a perfect matching? A matching is perfect iff |M | = |V (G)|
2 .

If |V (G)| is odd, then G has no perfect matching. If a component of G has an odd number of
vertices, then G also has no perfect matching.

If G is bipartite, then G has no perfect matching iff there exists a vertex cover X of G such that
|X | < |V (G)|

2 .

For example, consider 3 components K4 that are connected by one vertex. Such a graph has no
perfect matching.

Theorem 11.1. Tutte’s Theorem: A graph G has a perfect matching iff compo(G − X ) ≤ |X | for
every X ⊆V (G).

Theorem 11.2. Tutte-Berge: A graph G has matching of size k iff * compo(G−X ) ≤ |X |+|V (G)|−
2k for every X ⊆V (G).

11.1 is 11.2 with k = |V (G)|
2 .

Def. We say that a graph G is d-regular if deg (v) = d for every v ∈V (G).

• 1-regular simple graphs are matchings
• 2-regular graphs are unions of simple cycles

Def. We say e ∈ E(G) is a cut-edge if comp(G − e) = comp(G)+1 ⇐⇒ e does not belong to a
cycle in G .

Theorem 11.3. Let G be a 3-regular graph. If G has no cut-edge, then G has a perfect matching.

9



12 Vertex coloring

Let G be a loopless graph. A map φ : V (G) → S is a k-coloring of G if |S| = k and φ(u) 6=φ(v) for
every pair u, v of adjacent vertices of G .

• Elements of S are called colors
• The sets of vertices which are assigned a given color are color classes
• Color classes are independent sets

The chromatic number of G , denoted by χ(G), is the minimum positive integer such that there
is a k-coloring of G , i.e. G is k-colorable.

• χ(G) ≤ 1: Edgeless
• χ(G) ≤ 2: Bipartite ⇐⇒ no odd-cycles as subgraphs.
• χ(G) ≤ 3: Under the "Unique Games" hypothesis, every algorithm which does the follow-

ing must sometimes take exponential time in the size of the input.
Takes in G , and either outputs χ(G) ≥ 4 or χ(G) ≤ 100000

Lemma 12.1. Let G be a loopless graph. Then:

1. χ(G) ≥ w(G) where w(G) is the size of the maximum complete subgraph of G

2. χ(G) ≥ d |V (G)|
α(G) e

Example 12.1. Applying 2. to odd cycles yields:

α(C2k+1) = k =⇒ χ(C2k+1) ≥ d2k +1

k
e = 3

And equality holds for every k ≥ 1.

Let ∆(G) denote the maximum degree of a vertex in G . Let G be a loopless graph.

• ∆(G) = 0 ⇐⇒ χ(G) ≤ 1
• ∆(G) = 1 =⇒ χ(G) ≤ 2
• ∆(G) = 2 =⇒ χ(G) ≤ 3

χ(G) ≤∆(G)+1 for every loopless G .

A graph G is k-degenerate if every non-null subgraph H of G contains a vertex of degree at most
k. Every graph G is ∆(G)-degenerate.

• G is 1-degenerate ⇐⇒ G is a forest

Def. Greedy coloring algorithm: Algorithm for coloring graph that performs relatively well (op-
timal for complete graphs)

Input: Loopless graph G and an ordering (v1...vn) of V (G)

Algorithm: Color vertices in order using integers as colors. If v1...vi are colored, assign to vi+1

the smallest integer color which is not used by already colored neighbors of vi

Output: A k-coloring of G for some integer k.
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There is always an ordering of the vertices for which the algorithm outputs an optimal coloring.

Theorem 12.2. Let G be a loopless, k-degenerate graph for some integer k ≥ 0. Then:

χ(G) ≤ k +1

We would like χ(G) ≤ ∆(G). However, Kn is a counter example χ(Kn) = n and ∆(Kn) = n −1 as
well as odd cycles that have χ(C2k+1) = 3,∆(C2k+1) = 2. However, these are the only connected
counter examples.

Theorem 12.3. Let G be a loopless, connected graph. If G is not a complete graph or an odd
cycle, then:

χ(G) ≤∆(G)

Theorem 12.4. Blaise Pascal: For every k ≥ 0, there exists a simple graph Gk such that:

• w(Gk ) ≤ 2
• Gk is k-degenerate
• χ(Gk ) = k +1

Conjecture: If G is a loopless graph, then:

χ(G) ≤
⌈

w(G)+∆(G)+1

2

⌉

This bound would be tight. Let C k
5 be 5 graphs Kk joined in a cycle. Then, we have that w(G) =

2k, ∆(G) = 3k −1. By the conjecture and the bound from last time, we have that:

d5k

2
e = d|V (G)|

α(G)
e ≤χ(G) ≤ d5k

2
e

13 Edge Coloring

A k-edge-coloring of a loopless graph G is a map φ : E(G) → S with |S| = k such that φ(e) 6=φ( f )
for every pair of distinct e, f ∈ E(G) sharing an end.

G is k-edge-colorable if it admits a k-edge-coloring. χ′(g ) (the edge chromatic number) is the
minimum k such that G is k-edge-colorable.

k-edge coloring of G ⇐⇒ k-coloring of L(G), the line graph. In particular, χ′(G) =χ(L(G)).

Proposition 13.1. For a loopless graph G , we have ∆(G) ≤χ′(G) ≤ 2∆(G)−1.

Lemma 13.2. Let G be a graph with ∆(G) ≤ k. Then G is a subgraph of some k-regular graph
H . Moreover, if G is loopless (respectively bipartite) then H can also be chosen to be loopless
(respectively bipartite).

Theorem 13.3. Konig: For every bipartite graph G , χ′(G) =∆(G).
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Examples where equality doesn’t hold: χ′(C3) = 3 yet∆(G) = 2. Similarly,χ′(C2k=1) = 3 yet∆(G) =
2.

Theorem 13.4. Vizing: For every simple graph G , χ′(G) ≤∆(G)+1.

For graphs without loops but where parallel edges are allowed we need a bigger bound. For
example, take C k

3 to be the union of 3 cycles with k edges. Then, ∆(C k
3 ) = 2k while χ′(C k

3 ) =
3k.

We say that F ⊆ E(G) is a 2-factor in a graph G if every vertex of G is incident to exactly two
edges of F .

Theorem 13.5. Let G be a 2k-regular loopless graph then E(G) can be partitioned into k 2-
factors.

Theorem 13.6. Let G be a loopless graph, then χ′(G) ≤ 3d∆(G)
2 e

14 Minors and Hadwiger’s conjecture

H is a subgraph of G if H can be obtained from G by repeatedly vertices and/or edges.

Let e be a non-loop edge of a graph G with ends u, v . Contracting e corresponds to deleting
e and identifying u, v (in the new graph, every edge incident to u or v is incident to the new
vertex).

H is a minor of G if H can be obtained from G by either deleting vertices/edges and/or con-
tracting edges (possibly no operations, i.e. G is a minor of G).

Equivalently, H is a minor of G if H can be obtained from a subgraph of G by contracting
edges.

Proposition 14.1. A graph G contains a cycle Ck as a minor iff G contains a cycle of length at
least k as a subgraph.

Consequently:

• No C1 minor ⇐⇒ G is a forest
• No C2 minor ⇐⇒ G is a forest with some loops added.
• No C3 = K3 minor ⇐⇒ G is a forest with some loops and or parallel edges added (i.e. not

simple)

Hadwiger’s conjecture: Let G be a loopless graph, t ≥ 1 integer. If G has no Kt minor, then
χ(G) ≤ t −1. Since Kt−1 has no Kt minor and χ(Kt−1) = t −1, such a bound would be tight.

• t = 1: Then you have no vertices and thus 0-colorable.
• t = 2: No K2 subgraph, no loops =⇒ no edges =⇒ 1-colorable.
• t = 3: Forest, which is 2-colorable
• t = 4: Proved by Hadwiger
• t = 5: Equivalent to 4 color theorem (planar graphs don’t have K5 as minor)
• t = 6: Proved by Robertson, Seymour and Thomas
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A subdivision of a graph H is a graph G obtained from H by replacing edges of H by internally
vertex disjoint paths with the same ends (as the edges that paths replace).

If G contains a subdivision of H as a subgraph, then G contains H as a minor. However, the
converse is not true in general (see picture).

Lemma 14.2. Let G be a 3-connected graph, then G contains a K4 minor (and thus G contains
a subdivision of K4 as a subgraph)

Lemma 14.3. Let G be a simple, non-null graph with no K4 minor. Then, for every clique X ⊆
V (G), X 6=V (G), |X | ≤ 2, there exists v ∈V (G)−X such that degG (v) ≤ 2.

Theorem 14.4. If G is a loopless graph, G has no K4 minor, then χ(G) ≤ 3.

15 Planar graphs

A drawing of a graph G in the plane is a representation of G where vertices of G are represented
by distinct points in the plane and edges are represented by curves joining the points corre-
sponding to their ends, such that these curves don’t intersect themselves or each other.

Such a drawing of G divides the plane into regions where 2 points belong to the same region
if they can be joined by a curve disjoint from the drawing. There is always one unbounded
region.

A graph is planar if it admits a planar drawing. Let Reg (G) denote the number of regions in a
planar drawing of G

Jordan Curve theorem: Any closed non-self intersection curve separates the plane into 2 re-
gions. This implies that for any edge e of a planar drawing of a graph, if e belongs to a cycle,
then the 2 regions on different sides of e are distinct.

Theorem 15.1. Euler’s formula: Let G be a graph drawn in the plane. Then:

|V (G)|− |E(G)|+Reg (G) = 1+ comp(G)

More specifically, if G is connected, then |V (G)|−|E(G)|+Reg (G) = 2. If G is a forest, Reg (G) = 1.

The length of a region is the number of edges of G that belong to its boundary, with edges with
both sides belonging to the boundary being counted twice.

Lemma 15.2. Let G be a simple connected graph drawn on the plane with |V (G)| ≥ 3, then every
region of G has length ≥ 3

Lemma 15.3. Let G be a simple planar graph with |V (G)| ≥ 3. Then, |E(G)| ≤ 3|V (G)| −6. If G
contains no K3 subgraphs, then |E(G)| ≤ 2|V (G)|−4.

Corollary 15.4. The graphs K5 and K3,3 are not planar (count vertices/edges and see contradic-
tion with formula).

Corollary 15.5. Let G be a simple planar graph with |V (G)| ≥ 3, then:∑
v∈V (G)

6−deg (v) ≥ 12
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Theorem 15.6. Four Color Theorem: If G ′ is simple and planar, χ(G) ≤ 4

Corollary 15.7. If G is simple and planar, then χ(G) ≤ 6.

16 Kuratowski’s Theorem

Theorem 16.1. A graph G is planar iff G contains neither K5 nor K3,3 as a minor.

Theorem 16.2. A graph G is planar iff G contains neither a subdivision of K5 nor a subdivision
of K3,3 as a subgraph.

To show a graph is planar, either find a drawing for it or show there is a subdivision of K5 or
K3,3.

Theorem 16.3. Archdeacon: There is an explicity collection of 35 minor-minal graphs which
can not be drawn in the projective plane.

Theorem 16.4. Robertson, Seymour: Let F be a class of graphs closed under taking minors
(e.g. the class of all graphs that can be drawn on a given surface). If F is not the class of all
graphs, then there exists a finite collection H1, H2..Hk of graphs such that G ∈ F iff G does not
contain any Hi as a minor.

17 Coloring planar graphs

Theorem 17.1. Heawood: Let G be a loopless planar graph, then χ(G) ≤ 5

A graph drawn in the plane is a triangulation if every region is bounded by a cycle of length
3.

Let G ,G∗ be drawn in the plane. We say that G∗ is a planar dual of G if

• every region of G contains exactly one vertex of G∗.
• every edge of G is crossed by exactly one edge of G∗ and the drawings are otherwise dis-

joint.
• |E(G)| = |E(G∗)|.

Theorem 17.2. Tait: Let G be a planar triangulation and let G∗ be its dual. Then, χ(G) ≤ 4 iff
χ(G∗) ≤ 3.
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